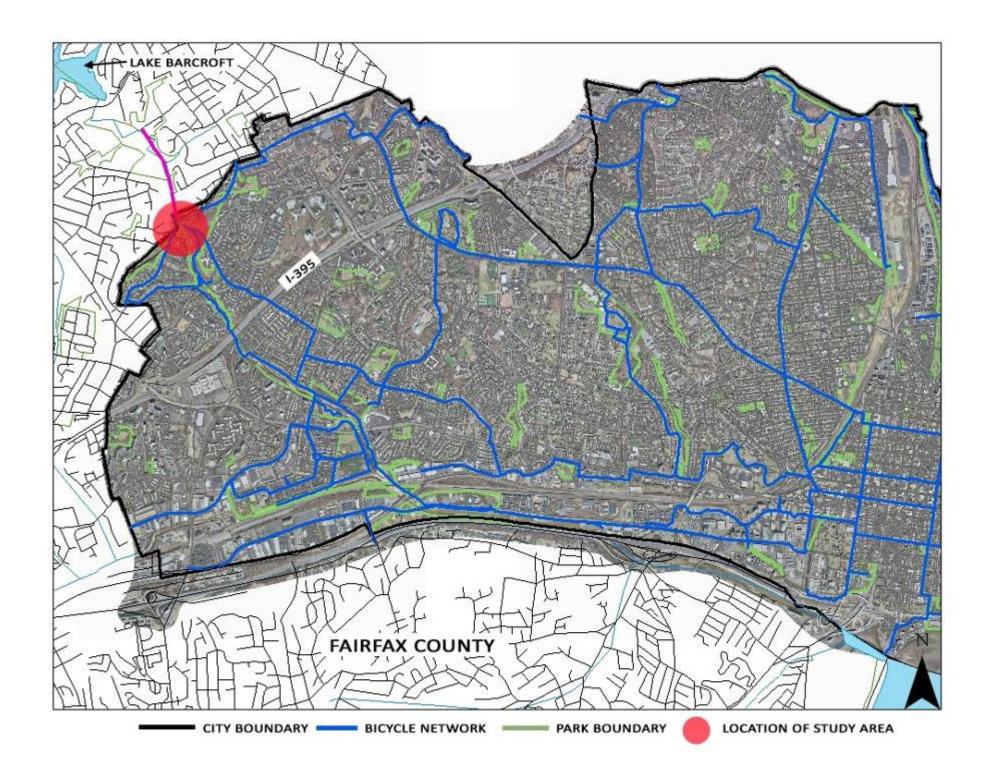
Holmes Run/Chambliss Crossing Study & Stream Bank Stabilization/ Restoration Project

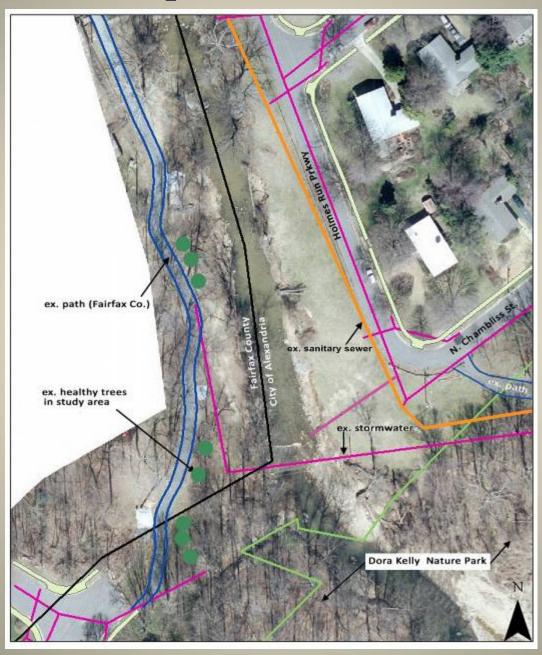
Final Community Meeting

September 24, 2009

Ramsay Recreation Center


Purpose/Agenda

Project review & update


 Review options for stream bank stabilization/restoration and crossing

Review city's preferred alternative

Next steps

Study Boundaries

Project Recap

First Public Meeting (March 2009) included:

- Review of initial project intent ("To explore a possible bike/ pedestrian crossing")
- Review of possible crossing types
- Strong community sentiment to include stream bank stabilization/restoration as part of the project

Project Recap

May 28th public meeting:

- •Expanded project scope for 350 linear feet of stream bank stabilization/ restoration
- •Reviewed crossing options and, using a criteria-based approach, recommended a crossing that is technically feasible and would not create a rise in the flood plain

May 30th public meeting:

- •Site visit and "101" session on stream bank restoration/ stabilization
- Established plan to coordinate with Fairfax County

Recent Events

- Staff/consultants finalize study (modeling & due diligence) and complete coordination with Fairfax County
- August- Community petition stressing key points:
- 1) Crossing will not contribute to or cause flooding.
- 2) Remaining open green space be conserved.
- 3) Adjacent stream bank be restored and stabilized.
- September- City response:
- 1) Protection of existing property shall be maintained (no rise)
- 2) Crossing is a necessary connection for regional trail network
- 3) Stream bank will be stabilized and restored
- 4) Meadow will be maintained to the maximum extent possible while meeting the primary goal of stream bank stabilization

How Erosion Happens...

Erosive Unstable Stream Banks

- -Water Quality and Habitat
- -Loss of Property
 - -Infrastructure
 - -Trees
- -Safety
- -Aesthetics

-Problem Is Getting Worse

How Do We Fix It?

Potential Solutions

- -Bank Stabilization
 - -Hard Engineering
 - -Rock
 - -Concrete block
 - -Bio-engineering
 - -Stabilize with natural materials and vegetation
 - -Some Rock Usually Incorporated

-Stream Restoration

- -Natural Channel Design
- -In-Stream Structures
- -"Reference Reach" approach

Why is this location a good candidate?

 To enhance the protection of adjacent real property from flooding events

•To stabilize the stream bank and prevent further erosion

•To increase in-stream habitat and improve water quality

To create a safer bank edge

To beautify the project area

Scenario 1 - "Do Nothing"

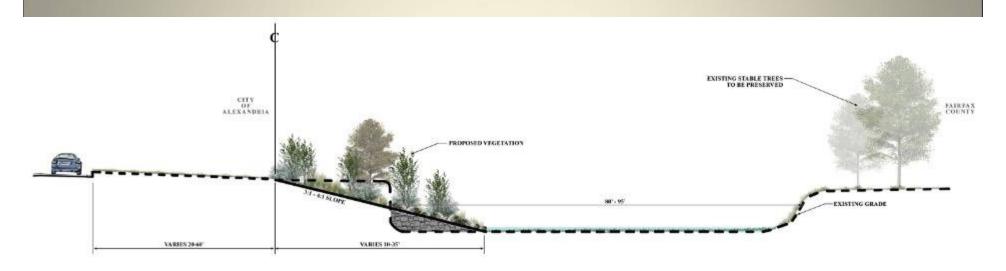
· Bank will continue to erode

Meadow will disappear

Edge will remain unsafe

Erosion will continue to introduce pollutants into stream

Scenario 2 - Stabilization


More "engineered" solution

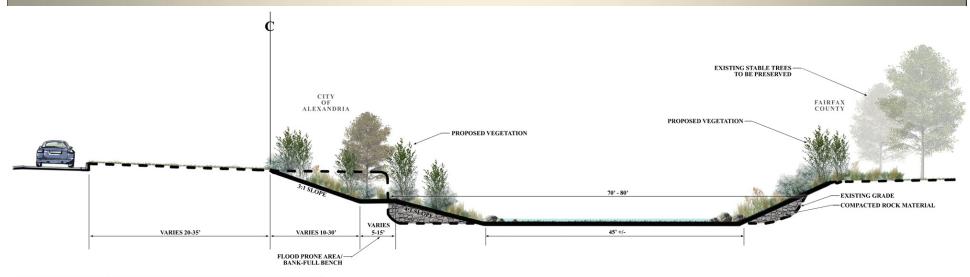
•Will not look as natural as the stabilization option

Limit of disturbance is less
 than restoration option

Scenario 2 – Stabilization Cross Section Looking
Downstream

PROPOSED TYPICAL STREAM SECTION (LOOKING DOWNSTREAM)

Scenario 3 - Restoration


 More natural solution with a combination of hard materials and planting

•Brings the stream to its natural state

Limit of disturbance is greater
 than stabilization option

Scenario 3 – Restoration Cross Section Looking Downstream

PROPOSED TYPICAL STREAM SECTION (LOOKING DOWNSTREAM) NOT TO SCALE

Typical Plant Material for Restoration Option

Keys are:

- Variety
- Use of natives
- Planting Zones
- Develop a natural look

Crossing

CrossingRecap Options

Bridge

Low Profile Crossing

Fair Weather Crossing

Crossing Design Matrix

DESIGN MATRIX FOR CROSSING OPTIONS			
CRITERIA	FAIR WEATHER CROSSING	LOW PROFILE CROSSING	BRIDGE CROSSING
HYDRAULIC IMPACT	Has no impact to flood elevations. Least amount of stream flow imapct.	Has no impact to flood elevations. Has slightly more impact to stream flow than fair-weather crossing. Also has more potential to gather debris.	A bridge set at the bank elevation causes a rise in the flood plain which is not permissable per FEMA and local regulations.
ENVIRONMENTAL IMPACT	Creates the most environmental impact since slab is directly on stream bed. Requires the most significant grading along the approaches to the crossing.	Creates moderate impact since piers are exposed. The base is covered by 1 ft of natural material. Requires moderate grading on the approaches.	Least environmental impact. Avoids stream all together. Bridge footings can be placed along streambanks. Requires minor grading along streambanks.
ACCESSIBILITY	Least accessible. Only allows limited crossing during non event times. Will be slippery due to buildup of algae over time.	Moderate accessibility. Will be designed to stay dry for one year events. Will flood during larger events.	Most accessible. Designed to span flood zone.
AESTHETICS	Will have the least visual impact along the stream, but moderate visual impact along the approaches.	Will have moderate visual impact along the stream. Can be kept low to hide most of the structure from houses.	Is the most visual option due to height and size of structure.
соѕт	Least expensive.	Moderately expensive. Construction will utilize pre-fabricated pieces.	Most expensive due to high elevation. Cost is not feasible for this project.

Crossing-Key Points

Important and necessary
 to City and Fairfax County
 for regional trail connectivity

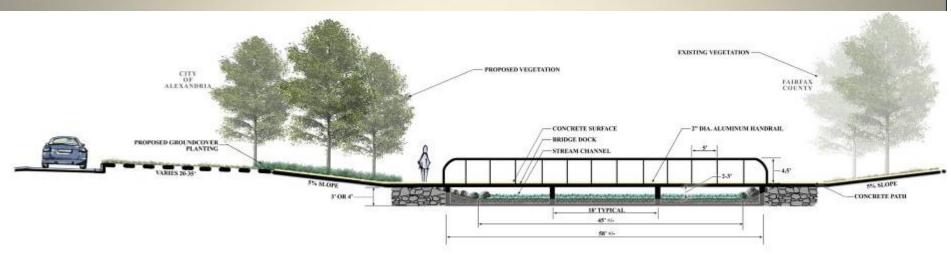
 Low profile option will not create a rise in the flood plain elevation

 Low profile crossing will be designed to limit disturbance to the existing area

Crossing Low Profile Option

Preferred Option

•Crossing elevation 3-4 ft above low flow


Designed to not increase
 flood elevation even if
 completely blocked by debris

 Designed to limit visual impact to surrounding area.

Crossing

Low Profile Option

TYPICAL LOW-PROFILE BRIDGE CROSSING SECTION (LOOKING DOWNSTREAM) NOT TO SCALE

Project Schedule...Next Steps

- •September 24 Final Community Meeting for Study to present preferred option for crossing and stream bank stabilization/ restoration
- •Fall 2009 Design development & PE (formal engineering) phase of preferred option and begin agency permitting
- •Winter- Spring 2010 (<u>Pending VDOT and</u> <u>federal agency comments</u>): Finalize permits and spring construction meeting for public to review schedule
 - Project renewed in City CIP
- Summer 2010 Bid and Award Construction
 Contract
- Spring/Summer 2011 Construction

Holmes Run/ Chambliss Crossing Study Public Information Session THANK YOU.

